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Using the equations of the three-dimensional problem of the theory of thermo-elasticity for an anisotropic body the asymptotic 
solution of the mixed boundary-value problem for a plate of variable thickness is obtained. It is assumed that the displacement 
vector is prescribed on one of the face surfaces of the plate, while the conditions of the fust, second, or mixed boundary-value 
problem of the theory of elasticity are given on the other surface. Apart from surface forces, the plate is also subjected to given 
volume forces and temperature fields. It is proved that the Kirchhoff-Love hypotheses are not applicable to this class of problems. 
Iterative processes are ec,nstructed and reeursive formulae are obtained, which enable the components of the stress tensor and 
displacement vector to be: determined with an asymptotic accuracy specified in advance. Several examples are considered which 
illustrate the effectiveness of the resulting formulae and the asymptotic approach. @ 1996 Elsevier Science Ltd. All fights reserved. 

The asymptotic method [1--6] has turned out to be especially effective for plates and shells with mixed 
boundary condition.,; specified on the face surfaces [7-9]. In particular, it has been proved that the 
hypotheses of the classical theory of plates and shells are inapplicable to this class of problems. 
Asymptotic solutions of mixed boundary-value problems were constructed in [7-12] for single-layer and 
multi-layer anisotropic strips and plates of constant thickness. As we shall see below, the asymptotic 
method is also effective for solving mixed boundary-value problems involving plates of variable thickness. 

1. Consider a thin anisotropic body of variable thickness occupying a domain f~ = {a, [3, y: co, 13 
Z, -~(oc,  15) ~< T ~< ~1 (cz, [3), cO, (cx, I]) > 0}, where Z is a plane inside the body that does not intersect 
the  face surfaces. The latter are given by sufficiently smooth functions y = ~01(0c , 13) > 0 and y = --~(cx, 
~) < 0, where cx and ]3 are curvilinear coordinate axes on E which coincide with the principal directions 
of anisotropy, and T iis the rectilinear axis perpendicular to X at the point (cz, 13). 

It is required to 6etermine the stress-strain state of such a plate of variable thickness when the 
components 

uj(-¢p2)=u.~,  j = oc,13,7 (1.1) 

of the displacement vector are given on the face surface 7 = -~01(0~, [~) and the conditions of the first 
boundary-value problem of the theory of elasticity 

ff~x cos(n,0t)+ffjl~ c o s ( n , ~ ) + f f j r  c o s ( m y )  = Fnj, j = ot,[~,y (1.2) 

the second boundary-value problem 

u j ( ~ , ) = u ~ ,  j=o~,~,y (1.3) 

or the mixed boundary-value problem 

(a) oja cos(n, cx) + oil ~ cos(n, l~) + oy~, cos(n, 7) = Fnj, J = or, 

+ (1.4) u v (~01) = u v 

(b) uj(cp 0 = u 7, j = ~, 

tPrikl. Mat. Mekh. Vol. 60, No. 2, pp. 290-298, 1996. 

285 



286 L.A.  Agalovyan et al. 

(~av cos(n,5)+ (~pv cos(n,~)+(1 w cos(n,'D = F,~¢ (1.5) 

are specified on the opposite surface ~/= -%(5 ,  I~), where F~j(5, [~), u~(5, I~) (J = 5, [I, ~) are given 
functions and 

cos(n,5)= i ~tp~ (5,[~;A,B) (1.6) 
L4 05 

cos(n, ~) = ~-, 2 - 2 -I1~ 

where A and B are the Lam6 coefficients of the first quadratic form. 
We assume that the plate is acted upon by volume forces P = {Pa, Pp, P~} and temperature fields 

conforming to the Duhamel-Neumann model. 
In the equilibrium equations and elasticity relationships we change to dimensionless coordinates and 

dimensionless displacements using the formulae 

~ = 5 1 a ,  r l=f i la ,  ~ = ~ l l h = E - l ~ l a  

u a = a u ,  u p = a o ,  % = a w  

(h = max{sup% (okl~), suptP2 (5,1~)}, E = h t a) 

(1.7) 

where a is the characteristic dimension of the plate in the target plane, e is a small parameter and a >> h. 
As a result, we have the system 

1 ()(~act 1 Oactl~ 0ffoff. 
A ~ I B 0rl +e-I  ~ ~a(t le ta-cl~)k[ i+2akctcIa[l+aPct=O (a,[~;~,rl;A,B) 

- -  + - -  + e -I + ak[it~a~ , + akott~pV + aP t = 0 

1 ~u  + akav = al IOa~t + al2Ol~l~ + al3O.ff + al4O[~.t + al5Oct ~ + al6oot[i + 5110 
A ~9~ (1.8) 

(5,[~;~,rl;u,u ;A,B;1,2) 

3w 
~-I "~" = al 3(1ooa + a23(~1~13 +...+a36(Iot ~ + 5330 

I ~U 1 OU 
- - - a ( k = u + k ~ v  )= al6ffaa +...+a66ffctl~ +5120 

B~gr I A0~  

1 0w Ou 
+ c-I ~--( = a s 5($act +... +a55(Icff + a560ctl~ + 5130 

A 3~ 

(~,rl; u,u; 5,4; 513,523) 

where 13~k are the coefficients of thermal expansion and 0 = T -  T o is the temperature increment. 
In (1.8) the variability with respect to the coordinates could be taken into account by using the 

dimensionless coordinates introduced in [1], rather than (1.7). In the problems under consideration 
the solutions are obtained in the form of complete formulae, which implies that the influence of variability 
is one of the factors determining a common estimate of the remainder. 

We shall seek a solution of (1.8) as an asymptotic expansion 

N 
Q =.,.~= e",+'~Q('~)(~,q,;) (1.9) 

where Q is any of the quantities to be determined, xo = -1 for stresses, and x,, = 0 for strains. For the 
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contribution of the volume forces and the temperature field to be commensurable with that of the surface 
interactions it is necessary that 

N N 

PJ = s---o Y" e-2+" a-'P)")" 0 = ~  c-I+"O(")(~,rI,C~) (1.10) 

The asymptotic fi3rm (1.9) differs in a major way from that of the same quantities in the classical 
theory of plates. For example, here all the stresses have the same asymptotic order, whereas they are 
different in the clas~dcal theory [2, 5]. Also, we shall find that only in the ease of asym. ptotic expansion 
(1.9) is it possible to obtain a non-contradictory system for the unknown coefficients Q(S) of the expansion. 

Substituting (1.9) and (1.10) into (1.8) and comparing the coefficients of like powers of e on both 
sides of each of the equations in (1.8), we obtain a non-contradictory system for the quantities Q(S)(~, 
"q, ~) in (1.9). By soMng the resulting system and satisfying the boundary conditions (1.1), we obtain 
the following reeursive formulae, from which to determine the stresses and strains 

cF(S) _ (s) (s) (s) (s) 
~,x -- A130~tO + AI4Opy0 + AI5(I.~,0 + (Yo~x* (~, q,~) 

((xot, [$[$, (x~:: 1, 2, 6) 

= + = 

(u, u ,  w; 5l, 41, 31; •=3,4,5) 

u -t°) = u~, u -(') = 0, s # 0 (u, v, w; a, [3, ~,) 

-~xV* t~(s) = -  " "~""--~--~()~ t B ~ +ak.f(~(s-I)-cIf~-]))+ 2ak . (~ - i )  + o~c~ d~ (ot,[~;~,n;A,B) 

(s) = - 0  a ° ~ - I )  1 , .v[~ - -_(s- l )  + akc~o~-,) + e(cS) 
- ' A  ~ + d~ 

(~O) = B, iR~":' + BI2R(~ "~) + B,6R~ s) (1.11) G G *  

(¢1~, ~ ,  o~;  il, 21, 61; 1= i ,2 ,6 )  

I ~)w(.,,-i) 

(u, u; ~, q; 5, 4; A, B; 13; 23) 

(s) (s) (s) 
w~ '~J = I(al30,m, + a23al~13, +...+a360a13, + ~33 OC'~)d~ 

0 

) 1 
A ~r; + ak'iv"-" ' "~" ~ "<" ~ "') #~~) = - -  , . q 3 ~ . f f ,  - -  t , 1 4 u [ $ ¥ ,  - -  ~ , 1 5 , J o t ¥ ,  - -  0 [  I 

(~, 1"1; u, v ;  A, B; k,x, k13; 1, 2) 

R afS) 1 ~u ('-l) + 1 ~)o (.,.-I) 
B bT I A b~ a(k~u("-l) + k~ (.,.-l)~., ~(.,.) .. ,=(s)  ~ . . ( s )  ... a(s) = / - -  ~ ' 3 6 ' J ' l f f  * - -  L ' 4 6 v [ ~ y *  - -  ~ 5 6 v O f f *  - -  ~ 1 2  v 

Bran = (arakank -- am,,a a )A -I , B a = (a,,,,,,a,,,, _am, ,2 )A-I 

Bran = Bnm, m~en~-k: / :m,  m , n , k = l , 2 , 6  

Amt = - a  u B,,| - azt Bmz - a6t B,,,6 

Apt=aplAt t+ap2A2t+at ,6A6t+apt ,  Ap t#A tp ,  p,1=3,4,5 



288 L.A.  Agalovyan et al. 

The solution (1.11) contains the integration functions o ~ ,  o~0, o(~, which are so far unknown but 
can be uniquely determined from the boundary conditions on the face surface T =q)l(Ot, [~). 

1. If the coefficients of the stress tensor (1.2) are given on the face surface T =91(or, [~), we obtain 

o(s) [/'133¢1~(s) .a_/~34dt~(s) _t_/'~23dt~(s) ~ ̂ -I  
ct¥O =~.u24"~'c~ r~'13"Y[~ T~'14"~" T )t..a. 

5(s) t n35¢h(s) Fi33¢h(s) r~25¢h(,v) ~ ̂ -I  
[~yO =~u23"t"ct +~15"*'1~ +'-"13"*'3, 1 ~* 

(~ )0  t r~34,,~(s) _ n35¢h(S) a. /324¢h(s) ~ ̂ -I  
=~,LI25',~'ot "vu14-,~13 --...15-~-~ ,La. 

Olk l = C i k C i l  - -  CilC jk, A.  = C~3Di2~ + C_~402~ 5 + C35D 23 * 0 

(s) ^-(s) a ~ ) , ( T l ) y a +  (s) _o~) , ( ,h )  (1.12) (l)j =Ar,~j + ajl~,(?j)~/i ~ 

F~°)=F,j, F~(])=0, s*0 ,  j=o~,f~,T; ~l----~01((X,[~) 

C).~ = -Ai.~¥ ~ - A63Y~, Cta = -Ata~/~ - a6a~/0 

C)5 = l - A ) s ~ g a  -A6s lg l ] ,  C23 = - A 6 3 1 g a  -A231gl~ 

C24 = 1 - A64~a - A24WI ~, C25 = -A65~a - A25~1 ~ 

C33=1. C~4=-~l/l~, Cas=-Va  

1 Oq)l I 0(Pl 
V ~ - A  0 a '  W ~ - a  0[~ 

From the recursive formulae (1.9)-(1.12) it follows that in the case of rectilinear anisotropy of the 
compressible layer, when the surface T =91((x, I~) is a plane and the functions ? = -%(a ,  I~), F,#, u7 • :/ 
(j = 0~, I~, T) the volume forces P = {Pa, PI~, Pv}, and the temperature function 0(0t, I~, T) are polynomials 
of degree no greater than m, the iterative process will terminate after (m + 1) steps and the exact solution 
of the boundary-value problem for the layer will be obtained [7, 8, 11]. 

2. If the components of the displacement vector (1.3) are given on the surface T =%(0t, I~), we obtain 
the following expressions for the integration functions o(Om0 , O~o, o(~0 

(~(.") n* !/(.,) D* VY ) -'-n* i:(.,') a?o='5.~'a + 54 I~ -'-'53"~, (off, [~T, TY; 51, 41, 3l; l=5,4,3) 

V(S) - 1 (u +(S)_u_(S) +u~.~.)(_(p2 )_u~s)((pl))  

u+-(°)=u~/a,  u+(")=0, s = 0  (c~, [k T; u, u, w) (1.13) 

D~ = ( A a A q  - A~A~ )A-: ~ , D~k = ( A~Ai~ - AiiA~i )h-~ ~ 

i ~ j ~ k ~ i ;  i , j , k = 3 , 4 , 5  

A 2 = A33 (A45A54 - Aa4A55 ) + A43 (A55A34 - A54A35 ) + A53 (AaaA3.~ - A34A45 ) 

3. In the case of the mixed boundary conditions (1.4) we have 

n23t / ( s )  
"-'ctyo~(S) = [(A33C24 _ A34C~3)11)~ ~) + (A34C13 - A33CI4)(I)~ ~) + u14 v¥ ]A~ I 

(s) -- (s) ,~ p Xdi~(s) t. l-~2511(X)lA--I 
(~1~¢0 -[(A35C23-A33C25)tI}ct  +(A33CI5 --"~35"13J"~13 "L ' I3  "'/ J~3 

, ~ \..r.(s) _ rt2411(.O 1 A-I a~o =[(A34C25 -A35C24)~ ~ +(A35C~4 -a34~sJ'~'i3 ~-uj.~ "v ~ 3  

= a D 25 A3 A33/~2~+r*34 13 +A35 D 2 3 ~ 0  

4. If the mixed boundary conditions (1.5) are given on the surface T = %((x, 13), we get 

(1.14) 
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is) + A s ~ ¥ f j ) V d . O + ( A 4 ~ A ~  A44A.~3 ) ~ * )  ]A'~ I 0"~o :=[(A,14 +A43~I3)V~ -(A54 . . . .  - 

_(s) = [_(A45 + A43V a )Va(S) + (A55 + As~¥~ )V~ '0 + (A45A53 _ A55A43)~ ¥(s) ]A 4-1 u~v0 -. 

13rt 0 ---- [ (A44¥a - A4sVI 3 )V~ s) - (A54~a - A55¥13 )V~ '') + ( A 4 4 A s s  - A 4 s A . ~  )O~")]A'~ l 

A4 = Ass A44 - A4sAs4 + (Aa4A53 - Aa3A54 ) ~ a  + (A55A43 - A45A53 )¥13 ~ 0  

(1.15) 

for the integration functions. 
It follows that the stresses and strains inside an anisotropic plate (layer) of variable thickness with 

the corresponding boundary conditions (1.1)-(1.5) can be computed using the asymptotic representa- 
tion (1.9) and reoarsive formulae (1.10)-(1.15) with any asymptotic accuracy specified in advance. 
Because the original boundary-value problem is perturbed in a singular way, the resulting solutions 
may differ considerably from the exact ones only near the lateral surface. This is where the given 
solution of the inner problem must be supplemented with a consistent solution of the boundary-layer 
type [13, 14]. 

To conclude this section we shall investigate the limits of applicability of the above solutions of  
boundary-value problems (1.1)-(1.5) and (1.9)-(1.15). The asymptotic character of  these solutions 
requires that 

N 
Q = .~_ ~."°+"Q ('0 +o(e ~Q÷~v) (1.16) 

In the general case it is difficult to estimate the remainder term in (1.16) for each N because of  the 
multitude of  elastic and geometrical characteristics of the plate, functions describing the face surfaces, 

. . . . .  - I -  "1" and boundary conditions given on these surfaces. Provided that the functions T = - 9 i ( ~  ~), u-fi F,q, O 
have bounded derivatives of  any required order, the estimation of  the order of  magnitude of  the first 
discarded infinitesimal term of the asymptotic expansion does not present a major difficulty in any 
particular problem, which will be illustrated by a separate example. 

2. To illustrate the results we shall consider a number of examples. 
1. We have a reservoir whose bottom is made of a r~dlh]_early orthotropic material Suppose that the bottom surface 

is described by the p~raboloid of revolution z = a(x 2 + y2)/2 in the chosen reference system, the horizontal plane z 
= H being the liquid k:vel. We need to determine the stress-strain state across the thickness of the bottom of variable 
height depending on the hydrostatic water pre.ssure Fn = pg(H- z), given that the lower surface of the compress~le 
layer is rigidly fixed at a depth z = --h (i.e. deeper than z = -h the bottom is assumed to be absolutely rigid) (Fig. 1). 

Thus we have a compressible orthotropic layer --h ~< z ~< ~x, y) of variable thickness with boundary conditions 

uj  ( z = - h ) = O ,  j = x , y , z  

- a X a  xx ( cp ) - a y a  x~, ( ~p ) + a xz ( ~P ) = axF,, 

-aX~xy (tp) - aYff ~:v (tp) + (l.~z (tp) = a y F  n 

- a x t l  xz ( ¢p ) - ayff.~ z ( q~ ) + tJ zz ( tp ) = - F n 

Fn = p g ( H - ~ p ) ,  c p = a r 2 1 2 ,  r 2 . = x 2 + y  2 

(2.1) 

- T  

Fig. 1. 
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where p is the liquid density and g is the acceleration due to gravity. 
Computing the stresses and strains by (1.11) with the boundary condition (2.1), after the first iteration step we 

have 

o(o)  _ A _(o)  (o) (o) ( 2 .2 )  xx --rt13Vz.Z ' Oxz =axAi3Ozz + a x F  n, (x,y;l,2) 

0!07=0, o (O)=-F n l _ a2 (x  2+y2)  
. .  - zz I -a2  x2 Ai 3 - a2 y2 A23 

U(x O) = (Z + h)A55otxOz ) " (x, y;5,4),  u~ O) = (Z + h)A330(~ ) 

The second iteration step yields 

O'(Ixz ) =fx 4"ggAi30- z.AI3--~x (x,y;l,2) 

i' a,.,~o) ;i,,~o) 
. (I) = o - z / - : - : - g - +  --Y~ / axfx +aYfv +fz 

ta , ,  j' ° :  - -zz  i - -  n 2.,t 2 A I 3  - a t 2 y 2 / [ 2 3  

AI38z, z + ( Z ' l - h )  Bl iA$5 vz 

O~I: -- A23 OO) +(z +h) BI2As, ~+ B22A44 y 

(01 10) 
+ A .  

, ~O(0) , c30(0) 
u (I) = AS.S (z + h)(fx+axAl~o)-~Am3ass(z 2- h 2 )--~-2-~-~A3~(z +h) 2 ~ (x,y;13,23;5,4) 

" " " " " " O X  / " " O X  

(2.3) 

3o(o ) o3o C°) (~..<o) ~o~O) ~ 1 .vz / I 2 u ~ l ) _  -- 
A33(z + h ) o - ~ ( z +  It) 2 a13A55-"~x- A23A44 T J - ~  A33(z 

I I (o) (o) 

(o) ~_(o) 

L t ~x T (x.y;1,2;5,4) 

(o) (o) (aox.  o,z '°' / 
fz =q~l ~'--"ff~'+"W"--axal3 ox oy dx 

Adding the first two approximations in (2.2) and (2.3), we can determine the components of the stress tensor and 
the displacement vector to within O(e2), which is, as a rule, sufficient in practical calculations. By continuing the 
iterative computation, one can obtain more accurate results. 

2. Suppose that the face surfaces z = %(x,y) and z = --92(x, y) of an orthotropic layer (plate) of variable thickness 
are rigidly fixed. The layer is subject to a temperature field which varies over the transverse coordinate, 0 = 0(z). 
It is required to determine the stress-strain state of the layer (Fig. 2). This problem arises, in particular, in the 
process of high-temperature stamping out of details of a given shape. 

The boundary conditions are 

u j ( z=qq)=u j ( z=- t#2 )=O,  j =  x,y.z (2.4) 

After the first iteration step we obtain 
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Oxz = 0t13 $ (x,y;I,2;5,4), 0,. = g33 • 
Ass ~. A33 

Oj a __AI 3 g33 ~I~_(IIlIBII +Gt22Bi2)O ' 
A33 

Oj T =A23 g33 (I~_(¢tlIBI2 +ot22B22)O 
- A33 

ux =¢tl3(Z +q)2 )~ +o~13( F(z)- F(-q)2 )) 

Uz = g33 (Z + cp 2 )O + g33 (F(z) - F(-(p2 )) 
z ! 

F(z)=~Odz, ¢P= (F(-q)2)- F(~Pi )) 
o qh +92 

g33 = t~l iAI3 +~t22A23 +~33 

On.=-O~12 O 
a66 

(x,y; 13, 23) 

(2.5) 

with accuracy O(e). 
To estimate the contribution of the physico-meehanical parameters and the variability of the boundary functions 

in the next approximation we state the values of the stresses corresponding to the approximation s -- 1. We have 

(I) = e(tPl -q)2 
O xz 2h 

(x, y;~,rl;13,23;5,4) 

o(i) ~( ~,2:,2 ..'~( (x,~ ~ (x2~ ~ ~  ~,+~02(~t,3 + 

' Ja .  AI3 ~Ip2 +iX A23 ~02 ') 
+8((1)+0(-~02 t A33 ho~ " A33 ~ J ~1 1 3 ~  23 - 7 ~  .-~'-" / 

-7-~-g~ _ + ( 0 + 0 ( - ~ 2 ) )  
" 2,, 

A33 -~" +0t23 A3"~.~- ~"  J+ 
(2.6) 

xx I " ~ "  . 

(x,y;AI3,A23 ;~tll ,BI 2 ; BI 2,B22 ) 

=~6~ ~+~2  al3~----'+tXo~ ~-- +U~l'+0t-$2))~m~ 

C~mparing (2.6) with (2.5), we can conclude that the order of the contribution of (2.6) to the general mlution 
depends on the order of quantifies of the type 

AI3 o~ A23 ~ AI3 ~tp2 A23 ~lp2 
A33g33 ~ ,  A33g33 Oq A33 ~ A33 3rl 

from which it follows that the combinations of ratios of the physical parameters and the variability of the 
1 characteristic function given in advance play an important role. If the terms in question are of order e- as compared 

with the corresponding terms in the initial approximation, the above asymptotic form is unsuitable. In practical 
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Fig. 3. 

applications one can avoid such cases by an appropr ia te  choice of the geometrical  parameters  and boundary 
functions. 

When  tpi(x, y) = const (i = 1, 2), i.e. for a layer of constant thickness, the solution (2.5) is exact. For  arbitrary 
9i the i teration can be continued to obtain a solution with an accuracy specified in advance. 

3. Consider  a plate of variable thickness in a Cartesian system of coordinates  x, y, z. Suppose that  the upper  
face surface coincides with the plane z = H, which is acted upon by a uniformly dis t r~uted  normal load with intensity 
q (Fn = -q) ,  while the lower surface has an arbitrary form z = --91(x,y), with the components  of the displacement 
vector specified on it. In particular,  suppose that  the surface is fixed to a rigid support  (u~ = u~ = Uz = 0) 
(Fig. 3). The plate is subject to a temperature  field T - T o = 0(z), and its own weight (Pz = Pg) is taken into 
account. It is required to determine the stress--strain state. This is a typical problem when constructing foundations 
[15]. 

The solution of the problem with accuracy O(e) is given by 

a ~  = - A l 3 [ q + p g H ) - K i p g z - ~ , l O  (xx,yy,xy;l ,2,6) 

~zz = - p g ( H -  z ) - q ,  t ~  =av: =O 

= u~. - ( Z + (p)A53 (q + p g H ) -  ~5"0 - I Kspg (z 2 _ (1)2 a x ) 

(x,y,z;  53,43,33; 5,4,3) (2.7) 
Z 

0 = IO(z)dz,  K i =al3Bli  +a23B2i +a36B6i 

~'i = tXllBli +°~22B2i +txl2B6i, i = 1,2,6 

K j = al j K I + a2j K 2 + a6j K 6 - a3j 

~.j = alia. I +a2j~. 2 +a6/~. 6 -tx(6_i)3, j = 3,4,5 
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